第323章 数学建模入门(2/2)
江蓓儿从书包里拿出草稿纸,快速画了一个状态转移图,“每个状态出发的概率之和必须为1,否则模型就不符合概率定义。”
“我懂了。”白彦秋点头,“那隐马尔可夫模型呢?和普通马尔可夫链有什么区别?”
“增加了观测状态和隐藏状态的概念。”
江蓓儿继续画图,“实际观测到的是表层现象,背后有隐藏的状态转移过程。需要用维特比算法或者前向-后向算法做推断。”
她讲得很仔细,白彦秋听得很认真。
周围的同学已经习惯了这一幕——江蓓儿和白彦秋总是在讨论一些听不懂的数学问题。
一开始还有人围观,后来发现完全听不懂,也就失去了兴趣。
只有林晓晓依然会凑过来,虽然听不懂,但还是一脸崇拜地看着江蓓儿。
“蓓儿好厉害啊,”她小声对同桌说,“讲的东西我都听不懂,但感觉好厉害的样子。”
“是啊,”同桌也感慨,“他们俩简直就是我们班的数学双星。”
数学双星。
这个称呼不知从什么时候开始,悄悄在班级里传开了。
---
周二放学后,班主任把江蓓儿和白彦秋叫到办公室。
“竞赛的详细通知下来了,”老师说,“这次是团队赛,每个队3-5人。你们只有两个人,要不要再找几个同学加入?”
江蓓儿立刻摇头:“不用。”
“可是规则要求至少三人……”老师为难地说。
“我们可以找外援吗?”白彦秋问。
“外援?”
“比如大学生或者研究生?”白彦秋说,“我表哥是数学系大二的学生,他可以作为顾问加入,但不参与实际解题。”
老师想了想:“这个……我得问问组委会。但如果只是顾问,应该可以。不过你们确定两个人能行吗?竞赛要连续48小时解题,强度很大。”
“能行。”江蓓儿简短地说。
白彦秋也点头:“我们可以的,老师。”
老师看着这两个自信的孩子,叹了口气:“好吧,我去问问组委会。你们先按两人团队准备,如果有变化再通知你们。”
走出办公室,白彦秋问:“真的不需要再找队员吗?”
“不需要。”江蓓儿说,“人多反而效率低。两个人刚好,可以充分讨论,又不会有太多分歧。”
“你已经有计划了?”
“嗯。”江蓓儿从书包里拿出一张纸,“这是初步分工。我负责算法设计和模型构建,你负责数据处理和编程实现。有问题吗?”
白彦秋接过纸看了看,摇头:“没有。分工很合理。”
“那好,”江蓓儿说,“从明天开始,每天放学后训练两小时。周末全天训练。”
“好。”白彦秋毫不犹豫地答应。
---
训练从周三正式开始。
放学后,两人留在空教室,江蓓儿拿出了准备好的模拟题。
“第一题:城市交通流优化。给出一个路网结构和车流量数据,设计信号灯控制方案,使总通行时间最小。”
白彦秋快速浏览题目:“这是典型的网络流优化问题。可以用图论建模,结合排队论考虑拥堵效应。”
“用什么算法?”
“线性规划或者整数规划,”白彦秋说,“但数据规模大的话,可能需要启发式算法,比如遗传算法或者模拟退火。”
江蓓儿点头:“思路正确。现在开始,你有两小时时间构建模型和算法框架。”
白彦秋立刻打开电脑,开始工作。
江蓓儿坐在一旁,没有帮忙,只是观察。
她发现白彦秋的工作习惯很好:先分析问题,再设计整体框架,然后才动手编程。过程中会不断记录思路和遇到的问题。
一个半小时后,白彦秋完成了初步模型。
“我用了混合整数规划,”他展示屏幕上的代码,“但计算复杂度很高,对于大规模路网可能需要简化。”
“怎么简化?”
“可以分区优化,”白彦秋说,“把大路网分成若干子区域,分别优化后考虑边界协调。”
“正确。”江蓓儿终于露出了一丝赞许,“这是实际工程中常用的方法。不过你忽略了一点:交通流具有时变性,早晚高峰和平峰时段的需求不同。”
白彦秋一愣,随即反应过来:“应该分时段建模,动态调整控制方案。”
“对。”江蓓儿在纸上写下一个公式,“这是时变交通流的建模方法,可以参考。”
白彦秋认真记下。
第一天的训练就这样结束了。
回家的车上,江水溶问:“训练怎么样?”
“他学得很快,”江蓓儿说,“思维很清晰,只是经验不足。”
“你觉得你们能拿奖吗?”
“能。”江蓓儿毫不犹豫,“只要不出意外。”
“什么意外?”
江蓓儿沉默片刻:“比如题目超出我们的知识范围……或者涉及一些……特殊领域。”
江水溶听懂了女儿的言外之意。
她在担心,竞赛题目会不会意外地触及那些不应该被公开讨论的领域——比如高维几何,比如跨维度现象。
“应该不会,”他安慰道,“小学生竞赛,题目范围是有限的。”
“嗯。”江蓓儿点头,但心里还是有一丝不安。
因为她知道,有时候巧合会发生。
就像她偶然间发现了石门的秘密。
就像白彦秋偶然间对高维几何产生了兴趣。
这个世界,可能比看上去的更……奇妙。
也更危险。
但无论如何,训练要继续。
竞赛要参加。
而她和白彦秋的这条路,才刚刚开始。
前方有什么,谁也不知道。
但至少现在,他们有一个共同的目标:赢下比赛!!