首页 > 都市重生 > 零点的未尽之路 > 第22章 神域的开局

第22章 神域的开局(1/2)

目录

1990年8月16日上午九时整,德国哥廷根。

第九届黎曼讨论会的主报告厅,坐落于那座爬满常春藤、承载了高斯、黎曼、希尔伯特等无数先贤思想的古老建筑内。晨光透过高大的彩绘玻璃窗,在深色的木质地板和阶梯式的座椅上投下斑驳陆离的光影。空气里弥漫着旧书、蜂蜡、以及一种唯有历经百年智力沉淀方能孕育出的、庄严肃穆的气息。台下,鸦雀无声。座无虚席,但与通常学术会议的熙攘不同,这里聚集的,是全球数学界真正金字塔尖的人物,以及极少数像赵小慧这样获得殊荣的“观礼者”。他们的神情,不是期待,而是一种近乎朝圣的凝重。即便是德利涅、志村哲也 这样的“骑士王”,也正襟危坐,目光沉静。格罗腾迪克 陛下坐在前排中央,微微闭着双眼,仿佛仍在与内心的数学宇宙对话。

百年庆典的主题,被定为 “算术几何的未来”——一个宏大得足以囊括整个学派野心的标题。所有人都屏息以待,等待着学派的“开局”,等待着定调未来数十年走向的“第一声钟响”。

主持人皮埃尔·德利涅 陛下没有多余的寒暄,只是用平静如水的语调宣布:“第九届黎曼讨论会,现在开始。第一位报告人,中森晴子夫人。报告题目:《代数秩与解析秩的联系》。”

题目本身,中正平和,是算术几何的核心问题之一。在众人想象中,这该是一场从 动机的上同调 或自守表示的L函数 这类极高层次概念 切入的、充满抽象范畴语言和复杂交换图的宏大报告。

中森晴子 夫人从容起身,步履轻盈地走上讲台。她身着素雅的深色和服,仪态端庄娴静,如同从古画中走出的仕女,与周围充满欧洲古典学术气息的环境形成了一种奇异的和谐。她向台下微微鞠躬,目光沉静地扫过全场,没有立刻开口。那种静谧的力量感,让台下的寂静又加深了一层。

然后,她转身,用粉笔在黑板上——没有使用任何幻灯片或投影仪——流畅地写下了第一行字,一个具体得不能再具体的椭圆曲线方程:

E_{a,b,c} : y2 = x(x - a)(x + b)

???

台下,至少有一半的顶尖数学家们,脸上瞬间浮现出毫不掩饰的错愕与茫然!尤其是那些从巴黎、剑桥、伯克利赶来,对学派风格有所了解但未窥堂奥的算术几何专家们。他们面面相觑,眼神中传递着无声的疑问:

“这……这是什么?”

“一个具体的椭圆曲线?参数是 a, b, c?这看起来……太初等了!”

“中森夫人……是不是拿错讲稿了?这不是高中数论竞赛的水平吗?”

“学派的开局报告……不应该是从‘概形’的万有性质或者‘平展上同调’的导出范畴开始吗?怎么从这么‘简单’的方程开始?”

一种微妙的失望和困惑情绪,如同细微的涟漪,在台下悄然扩散。就连坐在后排观礼的赵小慧,也不禁微微蹙起了眉头,心脏揪紧。她为学派工作多年,深知其追求普遍性与深刻性的风格。如此“接地气”的开场,完全出乎她的意料。她担忧地看了一眼台前 依旧闭目养神的格罗腾迪克陛下 和面色平静如常的德利涅陛下,心中稍安,但疑惑更甚。

中森晴子 夫人仿佛完全没有察觉到台下的细微波动。她的声音清晰、柔和,却带着一种不容置疑的穿透力,如同溪水流过卵石,开始了她的讲述:

“诸位同仁,今天,让我们从一条非常特殊,却也蕴含着普遍性的椭圆曲线开始。”她用粉笔轻轻点着方程中的参数,“请注意这里的约束条件。我们要求 a, b, c 是互素 的非零整数,并且满足一个非常简单的关系——”

她在方程下方,用力写下了那个 看似小学级别、却困扰了数论界半个多世纪的等式:

a + b = c

轰!!!

如同一声惊雷,在众多内行者的脑海中炸响!

刚才还弥漫着的轻视与困惑,瞬间被一种极度的震惊所取代!abc!是abc猜想 中的那个 a, b, c!这条看似平凡的椭圆曲线 E_{a,b,c},竟然直接将abc猜想中的核心算术关系——加法等式 a + b = c——几何化了!它不再是抽象的不等式,而是一条活生生的、具有丰富几何结构的代数曲线!

台下顿时响起一片压抑不住的、倒吸冷气的声音!许多人都不由自主地挺直了脊背,眼睛死死地盯住黑板。赵小慧 更是瞬间捂住了嘴,眼中充满了难以置信的光芒!她想起了自己研究过的布斯遗稿,想起了离散复分析与数论的联系,但从未想过,学派会以如此直接、如此霸道的方式,将abc猜想这个“硬骨头”转化为一个具体的几何对象!

“现在,”中森晴子夫人的声音依旧平稳,开始引导着众人进入她的节奏,“我们来考察这条曲线 E_{a,b,c} 的一个基本几何不变量——它的导子(ductor) N_E 。” 她开始板书计算,步骤清晰,逻辑严谨。她分析了曲线在各种素数 p 上的约化类型(好的、坏的、乘性的),详细计算了导子 N_E 的表达式。

台下,鸦雀无声,只有粉笔划过黑板的沙沙声,以及越来越粗重的呼吸声。所有人都屏息凝神地跟着她的推导。这些计算并不特别高深,却是扎实的代数几何基本功。但在此刻,因其背后所指向的那个巨大目标,而充满了令人窒息的张力。

最终,她得到了一个简洁而优美的结论:这条曲线 E_{a,b,c} 的导子 N_E,其核心部分,由 rad(abc) —— 即 a, b, c 的所有不同素因子的乘积 —— 所控制。更精确地说,log N_E 与 log(rad(abc)) 是同阶的。

她在黑板上写下:

本章未完,点击下一页继续阅读。

目录
返回顶部